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Fluctuation theorem and natural time analysis
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Upon employing a natural time window of fixed length sliding through a time series, an explicit
interrelation between the variability β of the variance κ1(= 〈χ2〉−〈χ〉2) of natural time χ and events’
correlations is obtained. In addition, we investigate the application of the fluctuation theorem,
which is a general result for systems far from equilibrium, to the variability β. We consider for
example, major earthquakes that are nonequilibrium critical phenomena. We find that four (out of
five) mainshocks in California during 1979-2003 were preceded by β minima lower than the relative
thresholds deduced from the fluctuation theorem, thus signalling an impending major event.
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Entropy production is a measure of the irreversibility
of a thermodynamic process: the difficulty, even impos-
sibility, of reversing the observed often macroscopic be-
havior of a system that exchanges heat or matter with
a complex environment (e.g., see Ref.[1] and references
therein). The breakage of time reversal symmetry as-
sociated with thermodynamic irreversibility has focused
enormous discussion for more than a century. Despite
of such concerns, however, the concept of entropy gener-
ation in the thermodynamics of large systems has been
applied widely. From microscopic point of view, efforts
towards understanding the nature of the entropy and its
production -mainly focused on the one way character of
the second law- have been attempted. They modelled the
microscopic evolution of a system and its environment in
the frame of stochastic dynamics [2] and stochastic ther-
modynamics [3–5], but interpretations based on deter-
ministic dynamics (e.g., see Ref.[6]) were also forwarded.
An intense interest towards the latter interpretations

has been renewed when Evans, Cohen and Morris in 1993
considered the fluctuations of the entropy production
rate in a shearing fluid, and proposed the so-called fluc-
tuation relation or the first fluctuation theorem [7]. This
is considered [8] to represent a general result concerning
systems arbitrarily far from equilibrium. The proof of the
fluctuation [9] and related theorems [10] shows how irre-
versible macroscopic behavior arises from time reversible
microscopic equations of motion. The two theoretical
results that illustrate this clearly are the second law in-
equality [11] and the very recent mechanical proof [12]
of Clausius’ inequality without the prior assumption of
the second “law” of thermodynamics. These two results
have been obtained without treating the nonequilibrium
entropy, but used instead a quantity termed dissipation
function first defined [13] in 2000. On the basis of this
function, being a path function and not a state function,
the relaxation of a system to equilibrium, which is inher-
ently a nonequilibrium process, can be quantified [14].
It has been emphasized in Ref. [6] that, unlike linear
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irreversible thermodynamics, the fluctuation and related
theorems are exact for systems of arbitrary size as well
as for systems arbitrarily near to, or far from equilib-
rium, as mentioned. This is why we shall employ here
the fluctuation theorem for the purpose of the present
study.
This theorem [7, 9, 15–19] gives a general formula for

the probability ratio that in a thermostated dissipative
system, the time average entropy production Σ̄t takes a
value A to minus the value −A,

Pr(Σ̄t/kB = A)/Pr(Σ̄t/kB = −A) = exp[At] (1)

from which it is obvious that as the averaging time or sys-
tem size increases, it becomes exponentially likely that
the entropy production will be positive. The theorem
was initially proposed [7] for nonequilibrium steady states
that are thermostated in such a way that the total energy
of the system is constant. Subsequently, it was shown
[18, 19] that this theorem can be proved for sufficiently
chaotic, iso-energetic nonequilibrium systems using the
Sinai-Ruelle-Bowen measure, as well as for purely Hamil-
tonian systems with or without applied dissipative fields
[20] and for a wide class of stochastic nonequilirium sys-
tems [21, 22].
It is one of the two basic aims of this paper to investi-

gate for the first time the application of the fluctuation
theorem to the case of earthquakes which may be consid-
ered (e.g. [23, 24]) as nonequilibrium critical phenomena
(the mainshock being the new phase). They exhibit com-
plex correlations in time, space and magnitude M which
have been recently studied by several workers (e.g., see
Refs. [25–29]). In particular, the present investigation
will be made by applying the fluctuation theorem to the
order parameter fluctuations that result from the anal-
ysis of the time series in a new time domain termed[30]
natural time χ. This is so, because natural time analy-
sis allows us to identify[31] when a complex system ap-
proaches a critical point (for a review see Ref. [32]) and
in addition enables the introduction of an order parame-
ter for seismicity. The present study has been motivated
by the following two findings related to the variability β
(defined below) of the order parameter of seismicity [33]:
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First, it captures the events’ correlations, as shown here
(see Appendix), which constitutes the other basic aim of
this paper. Second, the quantity β exhibits characteristic
minima [34] before the occurrence of major events.
In a time series comprising N earthquakes, the nat-

ural time χk = k/N serves as an index for the occur-
rence of the k-th earthquake. In natural time analy-
sis the pair (χk, Qk) is studied, where Qk is the energy
released during the k-th earthquake of magnitude Mk.
One may alternatively study the pair (χk, pk), where

pk = Qk/
∑N

n=1Qn is the normalized energy released
during the k-th earthquake, and Qk -and hence pk- is
estimated through the relation [35] Qk ∝ 101.5Mk . The
variance κ1(= 〈χ2〉 − 〈χ〉2) of χ weighted for pk, is given
by [30, 33, 36, 37]

κ1 =
N
∑

k=1

pk(χk)
2 −

(

N
∑

k=1

pkχk

)2

(2)

This quantity, as shown in Ref. [33], can be also consid-
ered as an order parameter for seismicity.
The fluctuations of κ1, are studied by applying the

following procedure [32]. Taking an excerpt of a seismic
catalog comprising W (≥ 100) successive events, we start

from the first EQ and calculate the first 35 κ1 values for
6 to 40 consecutive EQs. Then we proceed to the second
EQ, and calculate again 35 values of κ1 from the 7-th to
the 41-st event. Thus, scanning event by event the whole
excerpt ofW earthquakes, we calculate the average value
µ(κ1) and the standard deviation σ(κ1) of the κ1 values.
The quantity

β ≡ σ(κ1)/µ(κ1) (3)

is defined[38] as the variability β of κ1 for this excerpt
of length W . In some occasions, as in the present case,
it is of prominent importance to know what happens to
the β value until just before the occurrence of each EQ,
ei, in the seismic catalog. We then calculate first the
κ1 values using the previous l=6 to 40 consecutive EQs.
These 35 κ1 values are associated with the EQ ei, but
we clarify that EQ ei has not been employed for their
calculation. The β value -corresponding to the EQ ei- for
a natural time window length W is computed using all
the (35×W ) κ1 values associated with the EQs ei−W+1

to ei. The resulting value is denoted by βW , where the
subscript W shows the natural time window length, and
the corresponding minimum is designated by βW,min.

It is shown that the quantity β when using l consecutive events is interrelated with the event’s correlations through

β =

√

−∑all pairs

[

(

m
l
− 〈χ〉M

)2 −
(

j

l
− 〈χ〉M

)2
]2

Cov(pj , pm)−
[

∑

all pairs
(j−m)2

l2
Cov(pj , pm)

]2

κ1,M +
∑

all pairs
(j−m)2

l2
Cov(pj , pm)

, (4)

where 〈χ〉M and κ1,M correspond to the average value of χ and κ1, respectively, obtained when substituting for pk
the average -within an excerpt of W events- values µk of pk ; the symbol Cov(pj , pm) stands for covariance, i.e., the
average value of (pj −µj)(pm −µm) within the excerpt of W events. The details of the derivation of Eq.(4) are given
in the Appendix.

The selection of the W value used for the purpose of
our study is of crucial importance. It is taken equal
to the number of the events that would occur in a few
months, or so, in view of the following: Low frequency
(≤ 1 Hz) electric signals, termed Seismic Electric Sig-
nals (SES), appear before earthquakes [39, 40]. They are
emitted from the future focal region [41] (see also Ref.
[42]) when in the focal region the stress reaches a crit-

ical value σcr, and then a cooperative orientation of the
electric dipoles occurs. This leads to the emission of a
transient electric signal that constitutes an SES. Several
such signals within a short time are termed SES activity
[36, 37, 42, 43]. For example, the three lower channels
in Fig.1(b) show three SES activities that preceded ma-
jor earthquakes in western, southwestern and southern
Greece, respectively, as depicted in the map of Fig.1(a).
(Only for earthquakes of magnitude 6.0 or larger the SES
activities are publicized, see p.102 of Ref.[44].) Further-
more, for the sake of comparison, the upper channel in

Fig.1(b) shows a recent SES activity initiated on 8 Jan-
uary 2013 at a station labelled LAM in Fig. 1(a) in cen-
tral Greece (cf. On 4 June 2013 anML4.3 earthquake oc-
curred at 37.98oN24.01oE, i.e., around 20km E of Athens
(ATH), which is consistent with the earlier finding[44]
in 1999 that LAM station is sensitive to seismic areas
close to ATH. The analysis, which was made by follow-
ing Ref.[45], continued after this earthquake and showed
the following results: The probability Prob(κ1) of the
κ1 values of seismicity in the area N39.0

37.7E
24.2
22.6 maximized

at κ1 = 0.070 on 11 & 12 June 2013 exhibiting mag-
nitude threshold invariance for magnitudes in the range
Mthres = 2.2 to 2.6, see Fig.2, although the completeness
of the seismic catalog for such small magnitude thresh-
olds is unclear. These results seem to suggest that the
system approaches the critical point and conforms with
the fact that a sequence of additional SES activities were
recorded at LAM from 31 March to 11 April 2013, see
also Refs.[46–51]). The following important fact has just
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FIG. 1: (color online) (a) Major earthquakes in Greece on 8 June 2008 (green, magnitude Mw =6.4), 14 February 2008 (red,
Mw =6.9 and 6.4) and 8 January 2006 (blue, Mw =6.7). (b) Their preceding SES activities recorded at Pirgos (PIR) measuring
station located in western Greece are shown (with the corresponding color) in the lower three channels. Furthermore, an SES
activity initiated recently on 8 January 2013 at a station in central Greece labelled LAM in (a) is depicted in the upper channel
of (b). Additional SES activities were recorded at LAM from 31 March to 11 April 2013, see also Ref.[46]

been identified [52]: At the initiation of an SES activ-
ity, which usually occurs a few months (with an upper
limit of around 5 months) before a major EQ, a clearly
detectable change in seismicity appears, manifested by a
minimum βW,min in the fluctuations of the order param-
eter of seismicity. Hence, in the case that geoelectrical
data are lacking, once we identify the date of βW,min (by
analyzing solely seismic data) this reveals also the date
of an SES activity that would have been recorded.
Along these lines, Table I shows the dates of

the minima βW,min of seismicity before major main-
shocks in California during the 25 year period 1
January 1979 to 1 January 2004. We used the
United States Geological Survey Northern California
Seismic Network catalog available from the Northern
California Earthquake Data Center, at the http ad-
dress: www.ncedc.org/ncedc/catalog-search.hmtl,
hereafter called NCEDC. The seismic momentM0, which
is proportional to the energy release during an earth-
quake and hence to the quantity Qk used in natural time
analysis, is calculated [32] from the relation log10(M0) =
1.5M+const, where the earthquake magnitudes reported
in this catalog are labelled with M . The earthquakes
with M ≥ 2.5 reported by NCEDC, within the area
N45.7

31.7W
112.1
127.5 have been considered. We have on average

∼ 102 EQs per month since 31832 earthquakes occurred
for the 25 year period from 1 January 1979 to 1 January
2004. Thus, we adopted natural time window lengths
W =200 and W =300.
The results of this analysis are depicted in Fig. 3(a),(b)

where we plot the variability β (in red for W = 200 and
in blue for W = 300) versus the conventional time for
the periods (a) 1 January 1979 to 1 January 1990 and
(b) 1 January 1990 to 1 January 2004. An inspection of
these results lead to the βW,min values inserted in Ta-
ble I: In five out of the six mainshocks we find values of
β300,min and β200,min that appear 1 to 5 months before
mainshocks. In these five cases β200,min varies between
0.324 to 0.474 and β300,min between 0.378 and 0.472. We
note that the key criterion to distinguish the true pre-
cursory βW,min from the non precursory ones is the fol-
lowing [34]: The minimum should be followed (before the
occurrence of the mainshock) by a period during which
the exponent α of the Detrended Fluctuation Analysis
(DFA) [54] -calculated for a length W=300 events in the
magnitude time series- reaches a minimum αmin slightly
smaller than 0.5 (thus, indicating anticorrelated behav-
ior, but close to random) and then β200 > β300. This in-
equality means that when the system approaches closer
to the critical point -which is the case when considering
W=200 events compared to W=300 events- the fluctua-
tions of the order parameter become more intense.
We now proceed to the investigation of Eq.(1) in the

case of seismicity and analyze the statistical distribution
of the experimentally determined βW forW = 200 or 300,
which is clearly path depended. The quantity βW can be
considered as an entropic measure (see Appendix), but
its sign is by definition always positive. Thus, in order
to apply Eq.(1), we need to define a threshold value βW,0

above which the entropy production may be considered
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FIG. 2: (color online) The probability Prob(κ1) as it results from the analysis of seismicity after the initiation of the SES
activity depicted in the upper panel of Fig.1(b) within the rectangular area depicted in the map (uppermost right) for various
magnitude thresholds Mthres. The date and time of the most recent earthquake considered into the calculation (upon the
occurrence of which Prob(κ1) maximized at κ1 = 0.070) is written in each case.
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FIG. 3: (color online) The variability β of κ1 (left scale) plotted versus the conventional time for a natural time window of
length W =200 events (red) and W =300 events (blue) during the period: (a) 1 January 1979 to 1 January 1990 and (b) 1
January 1990 to 1 January 2004. The earthquakes with M ≥ 6.5 (right scale) are shown with vertical bars ending at solid
circles.

TABLE I: The minimum DFA exponent αmin along with the values of the minima observed for the variability β together with
the dates of their observation in parentheses before all major EQs in California with M ≥ 7.0 within N45.7

31.7W
112.1
127.5 during the

period 1979-2003. The M6.9 Northridge earthquake is also added in italics. The lead time ∆t for each case, estimated from
the difference in the dates between the EQ occurrence and the appearance of β300,min is shown in the last column. The values
for β300,min and αmin are taken from Ref. [34]

EQ Date EQ Name M β300,min β200,min αmin ∆t (months)
epicenter (date) (date) (date)

1980-11-08 Eureka 7.2 0.444 0.432 0.445 ≈ 3
N41.08oW124.62o (1980-08-01) (1980-06-28) (1980-08-01)

1989-10-18 Loma Prieta 7.0 - - - -
N37.04oW121.88o

1992-06-28 Landers 7.4 0.378 0.377 0.383 ≤ 5
N34.19oW116.46o (1992-01-28) (1992-01-03) (1992-02-02)

1994-01-17 Northridge 6.9 0.459 0.324 0.431 ≈ 2
N34.23oW118.55o (1993-11-14) (1993-10-18) (1993-11-14)

1994-09-01 Mendocino 7.0 0.472 0.474 0.458 ≈ 1
N40.41oW126.30o (1994-08-01) (1994-07-11) (1994-08-09)

1999-10-16 Hector Mine 7.0 0.444 0.432 0.422 ≈ 5
N34.60oW116.34o (1999-05-14) (1999-05-14) (1999-05-15)

Fluctuation theorem and natural time analysis 0.46 0.45

positive whereas when below negative. For this reason,
we employ the relation

Pr (βW − βW,0)

Pr (βW,0 − βW )
= exp [τ ′ (βW − βW,0)] , (5)

which results from Eq.(1) when considering A = βW −
βW,0 and experimentally determine Pr (βW − βW,0) by
using bins of width ∆βW =0.01. Figure 4 depicts the
natural logarithm of the left hand side of Eq.(5) as a
function of (βW − βW,0) for W = 200 and W = 300.
In each case, the threshold βW,0 is the one that maxi-

mizes the linear correlation coefficient (Pearson’s) r, thus
pointing[53] to optimal linearity. We find the threshold
values of β200,0 = 0.45 and β300,0 = 0.46. Moreover, the
relative ‘time-scale’ τ ′, which corresponds to the slope of
Fig.4, lies in the range 40.6 to 48.3, which is comparable
with a scale of the order of l =40 sequential events used
in the calculation of βW .

Let us now compare the aforementioned threshold val-
ues β200,0 = 0.45 and β300,0 = 0.46 with the βW,min val-
ues identified before each mainshock in Table I. We find
that except one mainshock, i.e., the Mendocino EQ in
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r, thus pointing[53] to optimal linearity.

1994, the other four mainshocks (including the strongest
in Table I) led to β200,min and β300,min values that are
lower than β200,0 and β300,0, respectively.
Thus, in summary, it may be considered that once the

natural time analysis leads to an identification of precur-
sory minima (i.e., β200,min and β300,min) that are lower

compared to the threshold βW,0 values determined from
the combined use of natural time analysis with the fluc-
tuation theorem, a forthcoming major EQ is likely to
occur.

Appendix: Interrelation of the variability β with
correlations when a (natural) time window of fixed

length is sliding through a time series

Here, we focus on the mean value µ ≡ E(κ1) of
κ1 and the corresponding standard deviation σ ≡

√

E [κ1 − E(κ1)]2 when a (natural time) window of length

l is sliding through a time series of Qk > 0, k =
1, 2, . . .W . Once these quantities have been evaluated,
the variability β of κ1 can then be estimated by β ≡ σ/µ.

1. The mean value µ ≡ E(κ1) of κ1

In a window of length l starting at k = k0, the quanti-
ties

pj(k0) =
Qk0+j−1

∑l

m=1Qk0+m−1

, j = 1, 2, . . . , l (A.1)

representing the normalized energy are obtained, which
satisfy the necessary conditions

pj(k0) > 0, (A.2)
l
∑

j=1

pj(k0) = 1 (A.3)

to be considered as point probabilities. We can then
define as usual[30, 55] the moments of the natural time

χj = j/l as 〈χq〉 =∑l

j=1(j/l)
qpj(k0) and hence

κ1(k0) =

l
∑

j=1

(

j

l

)2

pj(k0)−





l
∑

j=1

j

l
pj(k0)





2

. (A.4)

Note that κ1 is a non-linear functional of {pj}.

Let us consider the average value µj of pj obtained when the (natural time) window of length l slides through a
time series of Qk > 0, k = 1, 2, . . .W , i.e., we have[56]

µj ≡ E(pj) =
1

W − l + 1

W−l+1
∑

k0=1

pj(k0) =
1

W − l + 1

W−l+1
∑

k0=1

Qk0+j−1
∑l

m=1Qk0+m−1

. (A.5)

It is obvious that the definition of Eq.(A.5) is consistent with Eq.(A.3), thus we have

l
∑

j=1

µj = 1. (A.6)

Similarly for the second order moments of pj , one can estimate[56] the variance of pj by

Var(pj) ≡ E
[

(pj − µj)
2
]

=
1

W − l + 1

W−l+1
∑

k0=1

(

Qk0+j−1
∑l

m=1Qk0+m−1

− µj

)2

(A.7)
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FIG. 5: The probability Prob(κ1) as it results from the analysis of seismicity that occurred after the initiation (at 02:30 UT
on 31 March 2013) of the sequence of the additional SES activities from 31 March to 11 April 2013 (reported in the previous
version of this manuscript on 13 June 2013) within the rectangular area depicted in the map (uppermost right) of Fig.2 for
various magnitude thresholds Mthres. The date and time of the most recent earthquake considered into the calculation (upon
the occurrence of which Prob(κ1) maximized at κ1 = 0.070) is written in each case.

as well as the covariance

Cov(pj , pi) ≡ E [(pj − µj) (pi − µi)]

=
1

W − l + 1

W−l+1
∑

k0=1

(

Qk0+j−1
∑l

m=1Qk0+m−1

− µj

)(

Qk0+i−1
∑l

m=1Qk0+m−1

− µi

)

. (A.8)

In view of Eqs.(A.2) and(A.3), the quantities µj , Var(pj) and Cov(pj , pm) are always finite irrespective of the existence
of heavy tails in Qk which is for example the case of seismicity. Moreover, for the purpose of our calculations the
relation between the variance of pj, Var(pj), and the covariance of pj and pm, Cov(pj , pm), is important. Equations



8

-3

-2

-1

 0

 1

 2

 3

 0  200  400  600  800  1000  1200  1400  1600

no
rm

al
iz

ed
 d

ef
le

ct
io

n

time (s)

FIG. 6: The SES activity recorded on 8 February 2014 at the
station VOL (near Volos city, central Greece). The normal-
ized deflection versus time (lines with points) together with
its dichotomous representation (lines without points). The
data start at 17:05 UTC. The analysis of this SES activity in
natural time resulted in the following values κ1 = 0.076(3),
S = 0.092(3), and S− = 0.076(3) which are compatible with
those reported for SES activities (cf. S and S− denote the
entropy and the entropy under time reversal in natural time,
see Chapter 3 and Table 4.6 of Ref.[32]).

(A.3) and (A.6) lead to

pj − µj =
∑

m 6=j

(µm − pm), (A.9)

which when multiplied by (pj − µj) and averaged (cf. Ê ≡ 1
W−l+1

∑W−l+1
k0=1 ) results in

Var(pj) = −
∑

m 6=j

Cov(pj , pm). (A.10)

We now turn to the evaluation of the mean value µ of κ1 obtained when the (natural time) window of length l
slides through a time series of Qk > 0, k = 1, 2, . . .W ,

µ ≡ E(κ1) =
1

W − l + 1

W−l+1
∑

k0=1

κ1(k0), (A.11)

by studying its difference from the one that corresponds to the time series of the averagesM = {µk} which is labelled
κ1,M,

κ1,M =

l
∑

j=1

(

j

l

)2

µj −





l
∑

j=1

j

l
µj





2

. (A.12)

Hence,

µ− κ1,M =
1

W − l + 1

W−l+1
∑

k0=1







l
∑

m=1

m2

l2
[pm(k0)− µm]−

[

l
∑

m=1

m

l
pm(k0)

]2

+

(

l
∑

m=1

m

l
µm

)2






. (A.13)

In view of the definition of µm, the first term in square brackets in the right hand side of Eq.(A.13) vanishes, whereas
the latter two terms reduce to the opposite of the variance of

〈χ〉M =

l
∑

m=1

m

l
µm, (A.14)
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leading to

µ− κ1,M = − 1

W − l + 1

W−l+1
∑

k0=1

{

l
∑

m=1

m

l
[pm(k0)− µm]

}2

. (A.15)

Expanding the term within the curly brackets and interchanging the summations, we get

κ1,M − µ =

l
∑

m=1

m2

l2
Var(pm) + 2

l−1
∑

j=1

l
∑

m=j+1

jm

l2
Cov(pj , pm). (A.16)

which, upon using Eq.(A.10), leads to

µ− κ1,M =

l−1
∑

j=1

l
∑

m=j+1

(j −m)2

l2
Cov(pj , pm) =

1

2

l
∑

j=1

l
∑

m=1

(j −m)2

l2
Cov(pj , pm). (A.17)

The latter relation turns to

µ = κ1,M +
∑

all pairs

(j −m)2

l2
Cov(pj , pm) (A.18)

where
∑

allpairs ≡
∑l−1

j=1

∑l

m=j+1.

Equation (A.18) shows that the mean value µ itself is a measure of the correlations between successive earthquake
magnitudes. The practical use of this equation, however, in order to estimate the strength of these correlations between
seismic events requires[32, 56–59] the construction of a large number of shuffled copies of the original earthquake catalog
and a comparison of µ with the relevant distribution obtained from the shuffled copies. Obviously, this task becomes
cumbersome when the (natural time) window of length l is sliding through a long time series of Qk.
When Qk are independent and identically distributed positive random variables, Eq.(A.18) results[32, 57] in

µ = κu

(

1− 1

l2

)

− κu(l + 1)Var(p), (A.19)

where κu = 1/12 -corresponding to the κ1 value for the uniform distribution- and Var(p) the variance of any pj .

2. The standard deviation σ of the κ1 values

Let us now investigate the standard deviation σ of the κ1 values obtained when the (natural time) window of length
l slides through a time series of Qk. This is obtained from the variance

σ2 = Var (κ1) ≡ E
[

(κ1 − µ)2
]

=
1

W − l + 1

W−l+1
∑

k0=1

[κ1(k0)− µ]2 . (A.20)

Numerically, the above quantity can be evaluated almost as easily as µ when κ1(k0) are available.
In order to obtain an analytical expression, by inserting Eq.(A.18) into (A.20), we obtain

σ2 =
1

W − l + 1

W−l+1
∑

k0=1







l
∑

m=1

m2

l2
[pm(k0)− µm]−

[

l
∑

m=1

m

l
pm(k0)

]2

+

(

l
∑

m=1

m

l
µm

)2

−
∑

all pairs

(j −m)2

l2
Cov(pj , pm)







2

. (A.21)

Rearranging the terms

[

l
∑

m=1

m

l
pm(k0)

]2

−
(

l
∑

m=1

m

l
µm

)2

=

{

l
∑

m=1

m

l
[pm(k0)− µm]

}{

l
∑

m=1

m

l
[pm(k0) + µm]

}

=

{

l
∑

m=1

m

l
[pm(k0)− µm]

}2

+ 2〈χ〉M
{

l
∑

m=1

m

l
[pm(k0)− µm]

}

(A.22)
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we get

σ2 =
1

W − l + 1

W−l+1
∑

k0=1





l
∑

m=1

(

m2

l2
− 2〈χ〉M

m

l

)

[pm(k0)− µm]−
{

l
∑

m=1

m

l
[pm(k0)− µm]

}2

−
∑

all pairs

(j −m)2

l2
Cov(pj , pm)





2

. (A.23)

Upon expanding the square over the square brackets in Eq.(A.23) we obtain six terms:

σ2 =
1

W − l + 1

W−l+1
∑

k0=1

{

l
∑

m=1

(

m2

l2
− 2〈χ〉M

m

l

)

[pm(k0)− µm]

}2

(A.24a)

− 2

W − l + 1

W−l+1
∑

k0=1

{

l
∑

m=1

(

m2

l2
− 2〈χ〉M

m

l

)

[pm(k0)− µm]

}{

l
∑

m=1

m

l
[pm(k0)− µm]

}2

(A.24b)

−





∑

all pairs

(j −m)2

l2
Cov(pj , pm)





2

W − l+ 1

W−l+1
∑

k0=1

{

l
∑

m=1

(

m2

l2
− 2〈χ〉M

m

l

)

[pm(k0)− µm]

}

(A.24c)

+
1

W − l + 1

W−l+1
∑

k0=1

{

l
∑

m=1

m

l
[pm(k0)− µm]

}4

(A.24d)

+





∑

all pairs

(j −m)2

l2
Cov(pj , pm)





2

W − l+ 1

W−l+1
∑

k0=1

{

l
∑

m=1

m

l
[pm(k0)− µm]

}2

(A.24e)

+





∑

all pairs

(j −m)2

l2
Cov(pj , pm)





2

. (A.24f)

The following comments are in order: First, the term in (A.24c) vanishes due to Eq.(A.5). Second, the terms in
(A.24b) and (A.24d) clearly depend on moment correlations higher than the second, thus they should be neglected
when restricting ourselves to second order correlations. Third, the second term in (A.24e) can be evaluated using
Eqs.(A.15) and (A.17) leading to a partial cancellation with the term in (A.24f). Hence, restricting ourselves to second

order correlations, we finally obtain

σ2 =
1

W − l + 1

W−l+1
∑

k0=1

{

l
∑

m=1

(

m2

l2
− 2〈χ〉M

m

l

)

[pm(k0)− µm]

}2

−





∑

all pairs

(j −m)2

l2
Cov(pj , pm)





2

. (A.25)

The first term in Eq.(A.25) can be evaluated by expanding the square over the curly brackets and using Eq.(A.10)
-in a way similar to Eqs.(A.16) and (A.17)- so that we obtain

σ2 = −
∑

all pairs

[

(m

l
− 〈χ〉M

)2

−
(

j

l
− 〈χ〉M

)2
]2

Cov(pj , pm)−





∑

all pairs

(j −m)2

l2
Cov(pj , pm)





2

. (A.26)

Equation (A.26) reveals that σ2 -like the mean value µ in Eq.(A.18)- is a measure of the correlations, but σ2 is almost
proportional (see also below) to these correlations whereas in µ they appear as an additive term in Eq.(A.18).

3. The variability σ/µ

By combining Eqs.(A.18) and (A.26) we find:

β =

√

−∑all pairs

[

(

m
l
− 〈χ〉M

)2 −
(

j

l
− 〈χ〉M

)2
]2

Cov(pj , pm)−
[

∑

all pairs
(j−m)2

l2
Cov(pj , pm)

]2

κ1,M +
∑

all pairs
(j−m)2

l2
Cov(pj , pm)

. (A.27)
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This equation, which is just Eq.(4) of the main text, provides in general the interrelation between the variability β
and the event correlations.
Additional insight on the physical meaning of σ/µ may be obtained when adopting the paradigm of the uniform

distribution[32, 36, 37] which corresponds to a simple system operating at stationarity, i.e., when Qk are independent
and identically distributed positive random variables. In this case, we have[32]

µj =
1

l
, (A.28)

〈χ〉M =

l
∑

m=1

m

l2
=

1

2
+

1

2l
, (A.29)

and due to Eq.(A.10)

Cov(pj , pm) = −Var(p)

(l − 1)
, (A.30)

thus we obtain

σ2 =
Var(p)

(l − 1)











∑

all pairs

[

(

m

l
− 1

2
− 1

2l

)2

−
(

j

l
− 1

2
− 1

2l

)2
]2

− Var(p)

(l − 1)





∑

all pairs

(j −m)2

l2





2










. (A.31)

For large l the summations over all pairs can be effectively, e.g. l > 10, approximated by integrations

∑

all pairs

[

(

m

l
− 1

2
− 1

2l

)2

−
(

j

l
− 1

2
− 1

2l

)2
]2

≈ l2

2

∫ 1

0

∫ 1

0

[

(

χ− 1

2

)2

−
(

ψ − 1

2

)2
]2

dχdψ =
l2

180
, (A.32)

∑

all pairs

(j −m)2

l2
≈ l2

2

∫ 1

0

∫ 1

0

(χ− ψ)2 dχdψ =
l2

12
(A.33)

Equation (A.31) simplifies to

σ2 ≈ lVar(p)κ2u

[

4

5
− lVar(p)

]

, (A.34)

and Eq.(A.19) becomes

µ ≈ κu [1− lVar(p)] . (A.35)

Thus, the variability simply results in

β =
σ

µ
=
√

lVar(p)





√

4
5 − lVar(p)

1− lVar(p)



 . (A.36)

When Qk exhibit heavy tails as in the case for seismic-
ity, the quantity lVar(p) measures the intensity of such
tails and so does β. In other words, for randomly shuf-
fled earthquake data or earthquakes occurring with tem-
porally uncorrelated magnitudes, the variability β is a
measure of the b-value of the Gutenberg-Richter law.
Since real seismic data may also exhibit temporal correla-
tions between earthquake magnitudes[27, 32, 56–60], the

general expression of the variability obtained above (i.e.,
Eq.(A.27)) from Eqs.(A.18) and (A.26) captures both the

effects of correlations and heavy-tails.
When Qk do not exhibit heavy tails, which is not of

course the case of seismicity, the quantity lVar(p) is sim-
ply related[32, 61] to the mean µ0 and the standard de-
viation σ0 of Qk:

lVar(p) =
1

l

σ2
0

µ2
0

. (A.37)

Assuming that σ0/µ0 is of the order of unity, lVar(p)
becomes small compared to unity when l > 10, and
Eq.(A.36) becomes

β =
σ

µ
=

2√
5

σ0
µ0

(

1√
l

)

, (A.38)

i.e., the variability of κ1 is directly proportional to the
variability of the data Qk. Note that the same holds for
the standard deviation of the natural time entropy[32, 61]
S as well as for change ∆S of the entropy in natural
time under time reversal[32, 62] (cf. for the analysis in
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natural time under time reversal, see also Refs.[63] and
[64]). Thus, in this case, one could alternatively view β

as an entropic measure.
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